we know that $I = \frac{ΔV}{R}$ similarly, $\dot{Q} = \frac{ΔT}{Rth}$
Conduction Resistance
\[ \dot{Q} = \frac{kAΔT}{L}\]
If we compare with \( \dot{Q} = \frac{T1- T2}{Rth}\)
$\displaystyle Rth = \frac{L}{kA}$
A is Area of cross section
- Hallow Cylinder
Assumptions:
1. Steady state, 1D heat flow in radial direction
2. k is uniform
T1 and T2 inner and out surface temperature.
L is the length of cylinder.
heat flow rate $\displaystyle \dot{Q} =- k A \frac{dT}{dr}$
or, $\displaystyle \dot{Q} =- k 2 \pi rL \frac{dT}{dr}$
$\displaystyle \ \frac{\dot{Q} dr}{r} =- k 2 \pi L dT$
integrating from $ T = T_1$ at $ r = r_1$ to $ T = T_2$ at $ r = r_2$ yields,
$\displaystyle \dot{Q}\ln(r_2/r_1) = 2 \pi kL (T_2-T_1)$
or, $\displaystyle \dot{Q} = 2 \pi kL\frac{T_2-T_1}{\ln(r_2/r_1)}$
thus, thermal resistance $\displaystyle R = \frac{\ln(r_2 / r_1)}{2\pi kL}$
- Hallow Sphere
Assumptions:
1. Steady state, 1D heat flow only in radial direction
2. k is uniform
T1 and T2 inner and out surface temperature.
heat flow rate $\displaystyle \dot{Q} =- k A \frac{dT}{dr}$
or, $\displaystyle \dot{Q} =- k 4 \pi r^2 \frac{dT}{dr}$
$\displaystyle \ \frac{\dot{Q} dr}{r^2} =- k 4 \pi dT$
integrating from $ T = T_1$ at $ r = r_1$ to $ T = T_2$ at $ r = r_2$ yields,
$\displaystyle \dot{Q}\frac{(r_2 - r_1)}{r_1 r_2} = 4 \pi k (T_2-T_1)$
or, $\displaystyle \dot{Q} = 4 \pi k \frac{(T_2-T_1) r_1 r_2}{(r_2 - r_1)}$
thus thermal resistance $\displaystyle R = \frac{(r_2 - r_1)}{4\pi k r_1 r_2}$
Convection Thermal Resistance
By Newton's law of cooling, $\displaystyle \dot{Q} = h A(T_w - T_\infty)$
or, $\displaystyle \dot{Q} = \frac{(T_w - T_\infty) }{\frac{1 }{h A }}$
thus thermal resistance in convection is $\displaystyle Rconv = \frac{1}{h A}$
Critical Radius of Insulation
1. Steady state condition
2. 1D heat flow only in radial direction
3. Negligible thermal resistance due to cylinder wall
As we add insulation, intially thermal resistance (R)
decreases since r2 increases that will increases
heat transfer rate. At some critical thickness $ r_{cr} $ thermal resistance increases again and heat transfer is reduced.
To find $ r_{cr} $, set total thermal resistance $\displaystyle \frac{dR}{dr} = 0. $
$\displaystyle R = \frac{1}{2\pi r L h} + \frac{\ln(r/r_1)}{2\pi k L}$
$\displaystyle \frac{dR}{dr} = \frac{1}{2\pi k r L} - \frac{1}{2\pi r^2 L h} = 0$
thus, Critical radius $\displaystyle r_{cr} = \frac{k}{ h}$
similarly for sphere, $\displaystyle r_{cr} = \frac{2k}{ h}$
- For insulation thickness less than that $ r_{cr} $ heat loss increases with increasing r and after $ r_{cr} $ heat loss decreases with increasing r.
![]() |
Insulation Critical Radius |
No comments:
Post a Comment