Factoring Formulas:
a^2 - b^2 = (a-b)(a+b)
a^3 - b^3 = (a-b)(a^2+ab+b^2)
a^3 + b^3 = (a+b)(a^2-ab+b^2)
If n is odd then (a + b) is a factor of a^n + b^n.
If n is even then (a - b) is a factor of a^n - b^n.
Product Formulas:
(a-b)^2 = a^2 - 2ab +b^2
(a+b)^2 = a^2+ 2ab +b^2
(a-b)^3 = a^3 - 3a^2b+3ab^2 -b^3
(a+b)^3 = a^3 + 3a^2b+3ab^2 +b^3
(a+b+c)^2 = a^2 + b^2 +c^2+2ab+2bc+2ca
Logarithms:
y = \log_a x \Leftrightarrow x = a^y , \; a>0, a \neq 1
\log_a 1 = 0
\log_a a =1
\log_a (xy) = \log_a x + \log_a y
\log_a \frac{x}{y} = \log_a x - \log_a y
\log_a x^n = n \log_a x
\log_a x = \frac{ \log_c x}{ \log_c a} = \log_c x.\log_a c
a^{ \log_a x} = x
Compound Interest Formulas:
A : Future value
P: Initial investment
r : Annual interest rate
t : Number of years invested
n : Number of times compounded per year
A = P \left ( 1 + \frac{r}{n} \right )^{nt}
Continuous compound interest then,
A = P e^{rt}
Simple interest then,
A = P(1+rt)
Thank you so much for your post. This post really help me a lot and I have learnt some new things from your blog. I am bookmark your blog for future visit.
ReplyDeleteOnline architectural designer