Saturday, 4 July 2020

Algebra

Factoring Formulas:

\[a^2 - b^2 = (a-b)(a+b)\]
\[a^3 - b^3 = (a-b)(a^2+ab+b^2)\]
\[a^3 + b^3 = (a+b)(a^2-ab+b^2)\]
If n is odd then (a + b) is a factor of $a^n + b^n$.

If n is even then (a - b) is a factor of $a^n - b^n$.

Product Formulas:

\[(a-b)^2 = a^2 - 2ab +b^2\]
\[(a+b)^2 = a^2+ 2ab +b^2\]
\[(a-b)^3 = a^3 - 3a^2b+3ab^2 -b^3\]
\[(a+b)^3 = a^3 + 3a^2b+3ab^2 +b^3\]
\[(a+b+c)^2 = a^2 + b^2 +c^2+2ab+2bc+2ca\]








Logarithms: 

\[ y = \log_a x \Leftrightarrow x = a^y , \; a>0, a \neq  1 \]
\[ \log_a 1 = 0\]
\[ \log_a a =1\]
\[ \log_a (xy) = \log_a x + \log_a y\]
\[ \log_a \frac{x}{y} = \log_a x - \log_a y\]
\[ \log_a x^n = n \log_a x\]
\[ \log_a x = \frac{ \log_c x}{ \log_c a} = \log_c x.\log_a c \]
\[ a^{ \log_a x} = x\]

Compound Interest Formulas:

A : Future value
P: Initial investment
r : Annual interest rate
t : Number of years invested
n : Number of times compounded per year
\[ A = P \left ( 1 + \frac{r}{n} \right )^{nt}\]
Continuous compound interest then,
\[A = P e^{rt}\]
Simple interest then,
\[A = P(1+rt) \]




1 comment:

  1. Thank you so much for your post. This post really help me a lot and I have learnt some new things from your blog. I am bookmark your blog for future visit.
    Online architectural designer

    ReplyDelete

Contact Form

Name

Email *

Message *