Arithmetic Series
a, a + d, a + 2d, a + 3d, . . . . . . a + (n-1)d
Initial term = a
Difference between successive terms = d
nth Term, $a_n = a + (n-1)d$
\[a_i = \frac{a_{i-1} + a_{i+1}}{2}\]
Sum of the first n terms:
\[ S_n = \frac{n(a+a_n)}{2} = \frac{n}{2}[2a+(n-1)d]\]
Geometric Series
$a, \; ar, \; ar^2, \; . . . . \; ar^{n-1}$
nth Term, $a_n = a r^{n-1}$
Sum of the first n terms:
\[ S_n = \frac{a(r^n-1)}{(r-1)} \]
Sum of the infinity terms:
\[ S = \frac{a}{(1-r)}, \;\; |r| < 1 \]
Some Series
\[ 1 + 2 + 3 +4 + . . . . + n = \frac{n(n+1)}{2}\]
\[2 + 4 + 6 + . . .. +2n = n(n+1)\]
\[1 + 3 + 5 + . . . . .+(2n-1) = n^2\]
\[ 1^2 + 2^2 + 3^2 + . . . . + n^2 = \frac{n(n+1)(2n+1)}{6}\]
\[ 1^3 + 2^3 + 3^3 + . . . . + n^3= \left [ \frac{n(n+1)}{2} \right ]^2 \]
\[ 1 + \frac{1}{2} ++ \frac{1}{4} + \frac{1}{8}+ . . . . + + \frac{1}{2^n}+ . . . = 2\]
Convergence Tests
The Comparison Tests:
Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be series such that $0 < a_n < b_n$ for all n, then
- If $\sum_{n=0}^{\infty} b_n$ is convergent then $\sum_{n=0}^{\infty} a_n$ is also convergent.
- If $\sum_{n=0}^{\infty} a_n$ is divegent then $\sum_{n=0}^{\infty} b_n$ is also divergent.
The Ratio Tests:
- If $\lim_{n\rightarrow \infty} \left | \frac{a_{n+1}}{a_n} \right | < 1$ then $\sum_{n=0}^{\infty} a_n$ is convergent.
- If $\lim_{n\rightarrow \infty} \left | \frac{a_{n+1}}{a_n} \right | > 1$ then $\sum_{n=0}^{\infty} a_n$ is divergent.
- If $\lim_{n\rightarrow \infty} \left | \frac{a_{n+1}}{a_n} \right | = 1$ then $\sum_{n=0}^{\infty} a_n$ may converge or diverge and the ratio test is inconclusive; some other test must be used.
p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for 0< p < 1.
Power Series Expansions for Some Functions
\[e^x = 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!}+ . . . + \frac{x^n}{n!}+ . . . . \]
\[a^x = 1 + x \ln a + \frac{(x \ln a)^2}{2!}+ \frac{(x \ln a)^3}{3!}+ . . . + \frac{(x \ln a)^n}{n!}+ . . . . \]
\[\ln(1+x) = x - \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+......+\frac{(-1)^n x^{n+1}}{(n+1)}+ . . ., \;\;-1 <x <1\]
\[\cos(x) = 1 - \frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+......+\frac{(-1)^n x^{2n}}{(2n)!}+ . . .\]
\[\sin(x) = x - \frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+......+\frac{(-1)^n x^{2n+1}}{(2n+1)!}+ . . .\]
\[\tan(x) = x - \frac{x^3}{3}+\frac{2x^5}{15}-\frac{17 x^7}{315}+...... . . ., \;\; |x| < \frac{ \pi}{2}\]
\[\cosh(x) = 1 +\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+......+\frac{ x^{2n}}{(2n)!}+ . . .\]
\[\sinh(x) = x + \frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+......+\frac{ x^{2n+1}}{(2n+1)!}+ . . .\]
\[ \frac{1}{1-x} = 1 +x +x^2+x^3+x^4+...., \;\; |x| <1\]
\[ \frac{1}{1+x} = 1 -x +x^2-x^3+x^4-x^5+...., \;\; |x| <1\]
No comments:
Post a Comment